Construction of a domain that fails the global boundary Harnack principle via the Helmholtz equation

نویسنده

  • Hiroaki Aikawa
چکیده

We show the sharpness of the modulus of continuity of a function f for which the domain lying above the graph of f satisfies the global boundary Harnack principle, with the aid of precise estimates of the Poisson integrals with respect to the Helmholtz equation in the half space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A boundary Harnack principle in twisted Hölder domains

The boundary Harnack principle for the ratio of positive harmonic functions is shown to hold in twisted Hölder domains of order α for α ∈ (1/2, 1]. For each α ∈ (0, 1/2), there exists a twisted Hölder domain of order α for which the boundary Harnack principle fails. Extensions are given to L-harmonic functions for uniformly elliptic operators L in divergence form. Short title: Boundary Harnack ...

متن کامل

Application of Decoupled Scaled Boundary Finite Element Method to Solve Eigenvalue Helmholtz Problems (Research Note)

A novel element with arbitrary domain shape by using decoupled scaled boundary finite element (DSBFEM) is proposed for eigenvalue analysis of 2D vibrating rods with different boundary conditions. Within the proposed element scheme, the mode shapes of vibrating rods with variable boundary conditions are modelled and results are plotted. All possible conditions for the rods ends are incorporated ...

متن کامل

Global Positivity Estimates and Harnack Inequalities for the Fast Diffusion Equation

We investigate local and global properties of positive solutions to the fast diffusion equation ut = ∆u m in the range (d− 2)+/d < m < 1, corresponding to general nonnegative initial data. For the Cauchy problem posed in the whole Euclidean space R we prove sharp Local Positivity Estimates (Weak Harnack Inequalities) and Elliptic Harnack inequalities; we use them to derive sharp Global Positivi...

متن کامل

Potential Theory of Truncated Stable Processes

R d with a Lévy density given by c|x| 1{|x|<1} for some constant c. In this paper we study the potential theory of truncated symmetric stable processes in detail. We prove a Harnack inequality for nonnegative harmonic nonnegative functions of these processes. We also establish a boundary Harnack principle for nonnegative functions which are harmonic with respect to these processes in bounded co...

متن کامل

ar X iv : m at h / 06 05 53 3 v 1 [ m at h . PR ] 1 8 M ay 2 00 6 Potential Theory of Truncated Stable Processes

R d with a Lévy density given by c|x| 1{|x|<1} for some constant c. In this paper we study the potential theory of truncated symmetric stable processes in detail. We prove a Harnack inequality for nonnegative harmonic nonnegative functions these processes. We also establish a boundary Harnack principle for nonnegative functions which are harmonic with respect to these processes in bounded conve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 93  شماره 

صفحات  -

تاریخ انتشار 2016